Camera Bit Depth


Today’s Question: I just learned that my camera is actually capturing in 14-bits per channel when I shoot RAW, while I’ve been working in 16-bits in Photoshop. How much detail am I missing because my camera doesn’t support 16-bits?

Tim’s Quick Answer: Most digital cameras do perform the conversion of analog information (light) to digital information (pixel values) at a bit depth of 14-bits per channel. While most software provides a 16-bit per channel mode as the “high bit” option, the difference isn’t something you really need to be too concerned with.

More Detail: With most imaging software you have the option to work in either the 8-bit per channel mode or the 16-bit per channel mode. The primary advantage of a higher bit depth is that you have a wider range of tonal and color values available for the images. This is especially important with images that require relatively strong adjustments. The greater bit depth provides more overhead so that even with strong adjustments to the image there will be enough information “left over” to ensure smooth gradations of tone and color in the image. In other words, you’ll avoid posterization.

While the high bit depth option is generally a 16-bit per channel option, you can think of this as simply being a container that allows for more than 8-bit per channel information. Some cameras convert data at 12-bits per channel, most convert the data at 14-bits per channel, and a few actually process the data at a full 16-bits per channel. However, the differences aren’t as critical as they might seem.

The 8-bit per channel mode provides 256 tonal values per channel, which translates to almost 16.8 million possible color values. It so happens that this is the number of color values that the human visual system is estimated to be able to perceive, for someone with normal vision. So it would be fair to say that for the final image, 8-bits per channel is all you really need.

However, again, a higher bit depth can be very helpful, especially when strong adjustments will be applied to the image. By starting with more color and tonal values than you actually need, you’ll still have enough color and tonal values in the image even after adjustments have been applied, so that smooth gradations of tone and color will be preserved.

For a typical image with typical adjustments, however, that doesn’t mean you actually need the full range of color values provided by a bit depth of 16 bits per channel.

At a bit depth of 16-bits per channel you have 65,536 shades of gray available per channel, for a total of over 281 trillion possible color values. That is far more color and tonal values than you ever truly need in a photographic image, considering the capabilities of human vision.

At 14-bits per channel there are still 16,384 shades of gray per channel, for a total of over 4 trillion possible color values. And even at “only” 12-bits per channel there are 4,096 shades of gray per channel, for a total of over 68 billion possible color values.

So, the bottom line is that while an analog-to-digital conversion performed at 16 bits per channel will provide more possible color and tonal values in the image, there is a diminishing return relative to the final presentation of the image. In other words, there’s no reason to have any concerns about the fact that your digital camera performs the analog-to-digital conversion at “only” 14-bits per channel.

Tinting Options


Today’s Question: Is there a “best” way to apply a color tint to a black and white photo, or does it not really matter which method you use?

Tim’s Quick Answer: For a basic tint consisting of a single color, I would say any of the various options available would produce about the same result, all other things being equal. However, there are several options that allow you to exercise greater control and produce more interesting results, such as split toning or a gradient map.

More Detail: The way I generally describe a color tint for a black and white image is that you are replacing the shades of gray in the image with shades of a specific color. For example, a sepia effect involves replacing the shades of gray in a black and white photo with shades of a brownish-yellow color.

For this relatively simple effect, there isn’t a significant difference in terms of the final result (all other things being equal) among the various ways you could add such a color tint. Lightroom and Photoshop, for example, provide several options for adding a color tint to a black and white image, including the Tint control available with the Black & White adjustment and the Colorize option available with the Hue/Saturation adjustment (both of these specific examples being found in Photoshop).

For a slightly more sophisticated effect, you can use a Split Toning adjustment, which can be found in Adobe Camera Raw and Lightroom, among other software tools. With split toning you are adding a color tint similar to what you might use to create a sepia effect, with the difference being that you are able to apply two different colors. So, for example, you could create an effect where shadow areas are a bit more blue and highlight areas are a bit more yellow, rather than having the entire image appear with the same color tint.

If you really want to exercise significant control over this type of color tint that involves more than a single color, the Gradient Map in Photoshop is the option I recommend. You can start, for example, with a simple black-to-white gradient for the Gradient Map adjustment layer. You can then add additional color stops to define the gradient.

A very simple gradient for the Gradient Map adjustment might include black and white at the extremes, with a single additional color stop for sepia, resulting in a basic sepia-tone effect. You could include two color stops between black and white to produce the effect of a Split Toning adjustment. But you can add even more color stops to produce a very sophisticated tint effect for what would otherwise be a black and white image, with the Gradient Map assigning overall color and tonal values based on the luminance values of each pixel within the photo.

So, again, in terms of the basic result, you can feel perfectly comfortable choosing among any of the available adjustment options in Photoshop, Lightroom, or other software tools that allow you to apply a color tint to a black and white (or even color) photo. However, the various tools available for applying the color tint in the first place provide the potential to exercise greater control over the image. It is also worth noting that while it is perhaps most common to add a color tint to an image that is being interpreted as a black and white image, you can also add a color tint  or split toning effect to a full-color photo, without removing the original color.

“Upgrading” Adjustments


Today’s Question: I am upgrading from Lightroom 2 to version 4 on a new computer (I am a good bit behind, I know). I am trying to do some basic work on images that were uploaded in version 2 and put into version 4. I’m not clear on the ‘upgrade image’ button in the bottom right area. Should I automatically click on this?

Tim’s Quick Answer: Lightroom makes use of “Process Versions” to define the specific set of adjustments and algorithms available for an image, and you can change the Process Version for specific photos. In general it is advantageous to upgrade images processed with an older Process Version to the latest Process Version, though it is important to keep in mind that there may be some minor changes to the appearance of a photo when you make this change.

More Detail: When new adjustment features are added to a new version of Lightroom, a new Process Version is created to encapsulate those adjustments. In general it is advantageous to work in the most recent Process Version, so you have access to the latest features and algorithms for your photos.

The specific method of changing the Process Version varies in different versions of Lightroom, but you can find the Process popup in the Camera Calibration section at the bottom of the right panel in the Develop module. From this popup you can see the various Process Versions that are available, which currently include options for 2003, 2010, and 2012.

If you want to update the process version for multiple images, you can navigate to a specific location or apply a filter so that the images you want to update are shown on the Filmstrip. Then go to the Develop module, and click the alert symbol for the current image. This symbol will appear at the bottom-right of the photo in Lightroom 4, and below the Histogram display in Lightroom 5. When you click that symbol, you will be given the option of updating the current image to the latest Process Version, or updating all Filmstrip photos.

I recommend updating a single image to the latest Process Version as a test so you’ll see the degree to which the appearance of the photo changes based on the update. In most cases the changes will be minimal, and often represent a slight improvement in the image. But it is important to have a sense of this before committing to an update for multiple images.

But again, I generally feel it is advantageous to have the latest adjustment controls available, and also to have the latest algorithms for existing adjustments. Therefore, I usually prefer to update photos I’m working on to the latest Process Version.

Cropping and Adjustments


Today’s Question: Should I make adjustments to an image before cropping, or crop first and then make adjustments?

Tim’s Quick Answer: In many respects it doesn’t really matter whether you crop before or after applying adjustments to an image. However, it is important to keep in mind that in either case you might cause yourself to make different decisions than if you had performed the steps in a different order. In other words, being thoughtful about the impact of your workflow order can be important in some cases.

More Detail: If you apply a crop early in your workflow, you might remove areas of the image that you might have otherwise kept if you applied your adjustments first. For example, there might be an area near the edge of the photo that you feel is distracting. In this case you might choose to crop the area out. If, however, you had applied adjustments first you may have found that the area actually adds to the image. Perhaps highlight details just needed to be toned down, for example. In this type of situation it would have been better to apply adjustments first.

On the other hand, applying adjustments before cropping the image might cause you to apply those adjustments in a way that is different than you would have after the crop. A good example would be adjustments for the black and white values in a photo. If the area of a photo you cropped out happens to include the brightest and/or darkest areas of the photo, that could have a significant impact on the settings you use for the black and white point adjustments. In this case it would have been better to save the cropping for after the adjustments.

Of course, because the challenge here can be a factor regardless of which order you apply adjustments versus a crop, it can be challenging to anticipate the best approach for a given image. This is one of the many great benefits of working with a non-destructive workflow. By applying adjustments and cropping with a non-destructive approach (in either Lightroom or Photoshop, for example) you preserve the ability to go back and forth among the various adjustments and the crop, so you can fine-tune each based on the impact of the other.

Is JPEG Capture “Bad”?


Today’s Question: With the recent talk about Adobe not updating older versions of Camera Raw, among other issues such as slow updates for new RAW formats, how bad an idea would it be to shoot in JPEG instead of RAW so you don’t have to worry about software updates?

Tim’s Quick Answer: Shooting in JPEG (rather than RAW) most certainly streamlines certain elements of your workflow, but it also increases the risk of quality problems in your photos. However, if you ensure excellent exposure and accurate white balance in the camera, the only major issue to be concerned with is the potential for visible artifacts in the images caused by JPEG compression.

More Detail: With JPEG capture, there are certainly risks related to reduced flexibility for optimizing your photos. For example, a JPEG capture will always be an 8-bit per channel image, whereas a RAW capture can be processed to a 16-bit per channel image. This translates into a greater risk that gradations of tone and color will not be as smooth in JPEG images if you need to apply strong adjustments to those photos.

Of course, if the JPEG capture looks perfect (or close to perfect) right out of the camera, then you don’t have to worry about strong adjustments causing problems with image quality. So, if you’re confident in your ability to achieve accurate exposure and white balance settings, you don’t have to worry too much about image quality problems being introduced by strong adjustments.

That said, even with absolutely perfect photographic technique, you can’t avoid the issue of compression artifacts with JPEG captures. Even at the highest quality setting, JPEG captures will have compression applied to them in order to produce a smaller file size. That compression always has at least a slight negative impact on image quality for JPEG captures.

In some cases the compression artifacts may be very difficult to see. But they will be there. Frankly, the risk of having JPEG artifacts in photos is a critical factor from my perspective. In other words, while I am perfectly comfortable in my ability to capture images that require little or no adjustment (most of the time), I’m not willing to risk having compression artifacts visible in my photos.

The “insurance” provided by RAW captures when it comes to applying strong adjustments to tone and color is certainly appealing. And the potential for greater dynamic range and other benefits to overall image quality is appealing. But the real reason I avoid JPEG capture is the presence of JPEG compression artifacts in those captures.

Custom Printer Profiles


Today’s Question: Last week you talked about printer profiles for various papers. When a profile is not available for the paper and printer you’re using, is it possible to build one yourself?

Tim’s Quick Answer: It is possible to build your own profiles if you have a tool that allows for this, such as the ColorMunki Photo from X-Rite ( There are also a variety of companies and individuals offering custom printer profiling services if you prefer not to build your own profiles.

More Detail: Building a printer profile is relatively straightforward. You start by printing a specific image that includes a series of color swatches. You then “scan” the color swatches on that print using a spectrophotometer, which is a special device for measuring color precisely. The resulting information is used to build a custom profile for the specific printer, ink, and paper combination you used to print the image with the color swatches. That profile can then be used to produce highly accurate prints with that specific print setup.

You can also find various companies and individuals who will build profiles for you at a fixed fee (generally around $30 to $100 per profile). Many years ago I actually used to offer just such a service. Later I recommended a couple of service providers. However, the providers I recommended in the past no longer offer this service, and I prefer not to make recommendations for specific providers unless I have personally tested their services. However, an online search for “Custom Printer Profiles” will provide many options you can choose from.

And again, if you want to build your own printer profiles you can use a tool such as the ColorMunki Photo, which you can learn more about here:

Printer Profile Availability


Today’s Question: Is there a general source for ICC printer/paper profiles where the manufacturers of the printer and paper are different? I have an Epson 3880 printer and bought some HP premium plus glossy photo paper.

Tim’s Quick Answer: As a general rule you can find profiles for most third-party photo papers, supporting a variety of different printer models, directly from the paper manufacturer. However, that generally excludes support for a combination of printer and paper from two different printer manufacturers.

More Detail: If, for example, you had purchased paper from a company that does not manufacture printers (such as Red River Paper, for example, available at, you would generally find that profiles are available for most popular printer models.

However, in your case you have purchased paper from one printer manufacturer (HP) with the intent to print on that paper using a printer from another manufacturer (Epson). As you can imagine, HP would very much prefer that you only print on an HP printer, and so they have an incentive to provide ICC profiles for their papers only for use with their own printers.

In some cases you may get good results by using an ICC profile for a different paper that has similar properties to the paper you are actually printing with. However, more often than not you’ll find that this approach doesn’t provide the most accurate prints.

Therefore, if you want to use paper from one printer manufacturer to print with a printer from another manufacturer, you will generally want to skip the ICC profile altogether. Instead, you will need to choose the option to let the printer (rather than your software, such as Lightroom or Photoshop) manage the colors for the print.

You can then use the various settings in the printer properties dialog to make adjustments through a trial-and-error process to find settings that will produce an accurate print. Once you have those settings established, you can save them for use anytime you are using that specific printer and paper combination.

PSD Compatibility


Today’s Question: An earlier question related to concerns about not being able to open PSD files in the future. It has been my plan to switch to Photoshop Elements when my Photoshop CS6 is no longer serviceable. That, of course, assumes that Elements can read the .psd format. Is that a valid assumption?

Tim’s Quick Answer: Photoshop Elements is able to open Photoshop PSD files, but with a couple of significant caveats. Layers for a 16-bit image would not be supported, and features not supported in Photoshop Elements would not be available if they are included in the PSD file created in Photoshop.

More Detail: If your primary concern is simply being able to access your PSD images without necessarily having access to the layers, you can open a flattened version of the PSD image to retain the 16-bit per channel version of the photo without layers. You can also convert the layered image to the 8-bit per channel mode to retain the layers. Both of these options will be presented if you open a 16-bit per channel PSD image with layers using Photoshop Elements.

If you choose to convert the bit depth to 8-bit per channel in order to retain the layers for the PSD image, it is important to keep in mind that features from Photoshop that are not available in Photoshop Elements will still not be available. You would simply see a placeholder layer, for example, with no ability to make changes.

So, for example, if your PSD file contains a Curves adjustment or a Vibrance adjustment, since those adjustment layers are not available in Photoshop Elements you would see a placeholder adjustment layer within Photoshop Elements, but you would not be able to make changes to the settings for those adjustment layers.

In other words, the bottom line is that Photoshop Elements can serve as a good “emergency” fallback way to access images that have been saved in the Photoshop PSD format, but there is a very good chance you will lose access to many of the adjustments and other features you took advantage of originally for the image in Photoshop.

Adobe DNG Converter


Today’s Question: I’m surprised that you didn’t recommend converting to DNG so it could be processed as a RAW, and not an image format.

Tim’s Quick Answer: I’m surprised too. In yesterday’s email regarding updated support in Photoshop for new RAW capture formats, I should have mentioned that the Adobe DNG Converter (which is free) can be used to convert new RAW formats to the Adobe DNG format so those DNG files can, in turn, be processed with older versions of Adobe Camera Raw.

More Detail: In yesterday’s email I addressed the issue of Adobe Camera Raw (and Lightroom) not supporting new RAW capture formats. There are two elements to this. Even with the latest version of Adobe Camera Raw, support for new RAW capture formats takes a little bit of time (generally a month or so, but usually not more than about three months after the release of the new RAW capture format).

Furthermore, older versions of Photoshop (before the CS6 version) are no longer being updated at all with support for the newest RAW capture formats. That is why I mentioned that an upgrade to Photoshop CS6 or Photoshop CC would be necessary to ensure support for the latest RAW capture formats.

However, I should have mentioned that the Adobe DNG Converter provides a workaround for this issue. Just like Adobe Camera Raw, support for the latest RAW capture formats in Adobe Camera Raw requires a little bit of time. So taking this approach doesn’t provide support for a new RAW capture format any faster than you would get that support in the latest version of Adobe Camera Raw (or Lightroom).

However, with the Adobe DNG Converter you can continue to use an older version of Photoshop to process your newer RAW captures. The Adobe DNG Converter is a free download, and allows you to convert your RAW captures to the Adobe DNG format. You can then process those DNG files in an older version of Adobe Camera Raw or Lightroom, even if the original RAW capture was in a newer format not supported by your software version.

You can download the free Adobe DNG Converter (and get more information about this tool) through the Adobe website here:

New RAW Format


Today’s Question: I just bought a new Nikon model, the D5500, only to discover that Photoshop/Adobe Camera RAW has not been updated to process that camera’s RAW files. What is the best procedure until Adobe’s software is updated: use Nikon’s software to process the RAW image, then convert it into a tiff to finish up in Photoshop? — or convert the image into a TIFF immediately and then open it with Photoshop’s Camera RAW? (I don’t know if it affects your answer, but I use Photoshop CS5.)

Tim’s Quick Answer: There are two issues here. You will need to upgrade your software if you want to be able to process RAW captures with your new camera using Photoshop. If you don’t want to upgrade, you’ll need to process your RAW captures with other software (such as Nikon’s software) before opening the images in Photoshop.

More Detail: Adobe is no longer updating Adobe Camera Raw for Photoshop CS5 or earlier. In order to get support for the latest camera RAW formats in Photoshop, you will therefore need to upgrade to Photoshop CS6 or to the Creative Cloud version of Photoshop. With the Photography Plan subscription you will gain access to both Photoshop CC and Lightroom, with ongoing updates to both during your subscription.

If you choose not to upgrade to a newer version of Photoshop, you will need to find a different workflow. And, of course, while you’re waiting for Adobe to update Adobe Camera Raw to support the new RAW capture format for your camera, you’ll need to adopt this sort of workaround solution in any event.

The basic approach here would involve using RAW-processing software to convert the RAW captures to a TIFF file, and then open that resulting TIFF image in Photoshop. My recommendation is to take advantage of the RAW-processing step to apply at least basic adjustments to optimize the resulting image. In general I favor the software provided by the camera manufacturer for RAW processing, though there are other options available as well.

This issue of “delayed” RAW support can be a little frustrating for Photoshop users, as it adds an extra step to your workflow. It is even more challenging for Lightroom users, however, because you aren’t able to work with the unsupported RAW captures within Lightroom. You therefore need to create derivative TIFF images for the short term, and then “revert” back to the original RAW captures once Lightroom is updated with support for your new camera.

Unfortunately, since camera manufacturers continue to update the RAW capture formats used by new cameras, this sort of workflow challenge is likely to remain with us for some time.